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FLUID MOTION IN A ROTATING AND NUTATING CONTAINER

1. INTRODUCTION

Spin-stabilized projectiles with liquid payloads can

experience severe flight instability. Instrumented flight tests

indicate that this instability is characterized by a rapid increase

in projectile yaw angle accompanied by an abrupt loss in spin rate.

Detailed flight data for the XM761 smoke screening projectile were

given by D'Amico. 1 ' 2 ' 3 These data clearly show that the instabil-

ity is due to the motion of liquid white phosphorus embedded in

cotton wicks; at lower ambient temperatures when the phosphorus is 0

in a solid state, the projectile experiences a stabic flight.

A laboratory test fixture was developed by Miller at CSL*

to measure the despin moment of a full-scale XM761 container under-

going spinning and nutation.4 Miller's tests5,6 veritied the
7suggestion of Vaughn that white phosphorous in the wicks behaves

like a homogeneous, very viscous fluid. The tests also revealed a

maximum despin effect for fluids of kinematic viscosity in the S

range ot 0.1 sq m/sec. Flight tests of projectiles having a con-

tainer filled with corn syrup of kinematic viscosity 0.2 sq m/sec

were conducted at BRL and showed instability very similar to that

of the XM761.

The stability problem of the XM761 has, meanwhile, been

overcome. The cotton wicks have been replaced by felt wedges, and

separated by a longitudinal baffle and impermeable plastic foil. .

In view ot future designs, however, there is ongoing interest in

the interior fluid motion in spinning and nutating containers. The

experiments at CSL have significantly simplified the research tar-

get by showing that the basic phenomena can be studied for homo- -

genous liquid fills. The experiments have also shown that

viscosity plays an important, it not dominating, role in the

*Now the Chemical Research and Development Center, US Army

Armament, Munitions, and Chemical Command.
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problem and this observation makes the study of the fluid motion a

difficult task. Not only is an additional parameter introduced,

but moreover, the theoretical analysis of the motion cannot resort

to the simpler formulations of inviscid theory or boundary-layer

theory.

Major efforts to reveal the fluid motion and to determine

the despin and side moments required for aeroballistic investiga-

tions have been purely experimental. Miller conducted void obser-
8

vations in a transparent cylinder. He also developed an improved

spin fixture that allows for extended despin moment measurements as

well as for flow visualizations using a laser-induced colored dye

technique.9 D'Amico and Rogers located liquid-filled containers

within the rotor of a freely gimballed gyroscope and measured yaw

growth rates at fixed spin rates. 1 O The yaw growth indicates the

side moment exerted by the liquid motion. Observations with highly

viscous fluids showed that the growth rates were inconsistent with

the predictions based on the resonant interaction with inertial
11,12

oscillations as they occur in low-viscosity fluids. Although

the measurements of despin moments and yaw growth rates lead to

consistent conclusions concerning the role of viscosity, they pro-

vide two completely separate sets of data. The link between these

sets is given by the internal flow field in terms oa velocity and

pressure distribution. This flow tield, however, is as yet unknown.

A first step into linking and better understanding the

available data is to identify the nondimensional parameters that

model the flow. The experimental data base is as yet too small to

definitely identify these parameters, in particular the Reynolds

number. We, therefore, resort to formal dimensional analysis and

to an analysis, of governing equations and special solutions. The

availability of the relevant parameters also efficiently supports

the experiments since the amount of data recording can be

drastically reduced and (future) experiments can be carried out

with properly scaled containers, spin and nutation rates, and

scaled working fluids.
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The second step is to set up the governing equations in

the best-suited coordinate system and to prepare for approximate

solutions. Theoretical work in this direction is mostly based on

the Stewartson-Wedemeyer approach, using an inviscid core flow that

interacts with the boundaries through viscous boundary layers.

Essential improvements have been achieved by Murphy and Gerber,i 3

Sedney and Bartos.14 Use of the boundary-layer approximation,
however, precludes application of these theories and validity of

their results at low Reynolds numbers. The restriction to small

deviations from solid body rotation is always necessary for working
with linearized equations. We consider various sets of linearized

equations and discuss the inherent assumptions in relation with

estimates trom experimental data. In special cases, more general

solutions or new insight into the structure of the motion is

obtained. Finally, we discuss some aspects of computational
methods for solving the complete equations.

2. EXPERIMENTAL APPROACH AND RESULTS

Before going into analysis, we briefly describe the

experimental methods, the range of parameters, and the results

obtained to date.

2.1 Despin Moment.

Measurements of the despin moment were conducted using a

test fixture at CSL described by Miller.4 A full-scale XM761
payload canister was mounted in a frame under an angle 8 to the

vertical axis. The canister was cylindrical, with inner radius
a = 60.3 mm, length 2c = 517.6 mm, and a total mass ot about

12.25 kg. The angle 8 could be varied to be 5, 10, 15, or
2U degrees. The cylinder was spun up by an air turbine to

realistic spin rates of w < 6000 rpm. Then, the frame was rotated
a~out its vertical axis up to the desired nutation rate ot

S< 600 rpm. At higher nutation angles, the spin rate started to

decrease before the frame reached high nutation rates (Miller,

9



private communication, 1982). After cutting off the air turbine,

the spin rate was recorded as a function of time. The total despin

moment was obtained as the product of spin deceleration and axial

moment of inertia. The liquid-induced moment was found by

subtracting the :.oment due to friction that was previously

determined. As a result, the liquid-induced despin moment is given

as function of ý2, w, and 8. The method implies the following

assumptions:

a. The nutation rate is constant during spin-down.

b. The motion of the liquid till has no effect on the

moment due to friction as a function ot ý1, w, and a.

c. The flaid motion is quasi-steady; i.e., the spin-down

is slow enough for the fluid motion to fully adapt to

the instantaneous spin rates.

d. The friction moments are not a function of time.

For sufficiently high spin rates (w > 1000 rpm), the

liquid moment was found to be independent of '. Data for the

XM761 payload are given in Miller's figures 7 to 9.6 Additional

data were obtained for the cylindrical container filled with

homogeneous liquids of kinematic viscosities in the range from

V = l- sq m/sec (water) up to 1.35 sq m/sec (corn syrup). These

data are shown in figures 12 to 14 of the same paper. No attempt

was made to measure the side moment exerted by the fluid, which

would tLind to increase the nutation (or yaw) angle e . Only one

aspect ratio, c/a = 4.29, of the cylinder was studied in these
experiments.

An improved test tixture is presently in operation and

more detailed data will soon be available.

10
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2. 2 Yaw Angle Growth Rate.

Measurements of the yaw angle growth rate using a

gyroscope whose rotor contained a liquid-filled cylindrical cavity
Scot an 'm 1 6

were cond•icted by Karpov, Scott and D'Amico and D'Amico and
10Rogers. The nutation rate of the (empty) rotor for a given spin

rate was varied by changing the moments of inertia. The rotor was

spun up with the axis held fixed, and time was allowed for the
fluid to reach a state of solid-body rotation. After releasing the

gyroscope, the spin rate was held constant. The yaw angle was
measured in terms of an amplitude, A, and in A was recorded as a
function oa time.

The earlier experiments in the range ot high Reynolds

numbers served to verify Stewartson's theory. Linear increase of
in A with time (constant yaw growth rates) was found in some range

of small yaw angles. Scott and D'Amico observed nonlinearity at
anglhs as low as 1 degree (for c/a = 3). Virtually, a chanigeover

to a constant growth rate occurred. At higher viscosity, the
changeover still occurred but at higher yaw angles. The

experiments of D'Amico and Rogers were made with silicone oils of
high viscosity and with cylinders of aspect ratios c/a = 3.126 and

1.042. Spin rates were in the range of 3000 rpm. Constant yaw
angle growth rates were found up to the limit of the apparatus at

5 degrees. The growth rates at a low Reynolds number turned out to
be proportional to the nutation frequency and, therefore, must be

due to a mechanism different from the Stewartson-Wedemeyer model.
The data were correlated with various dimensionless parameters; _

however, a simple parametric dependence was not found.

The relation ot the yaw angle growth rate to the moments

exerted by the liquid is not easily obtainable. The moments of
inertia are not yiven for the various data points, precluding

determination of the side moment via the coefficients ot the

stability equation. Neither the inPlane morne'. -he despin

moment have been separately measured. Therel.rE . t di a are

ii
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completely separated from those in 2.]. They lead, however, to the

same conclusion, that a basically viscous mechanism can lead to the

instability of a projectile with liquid payload.

2.3 Flow Field.

The flow field that develops from the viscous fluid motion

is unknown. Miller reported void observations for a (95%) filled
8cylinder with an aspect ratio of 4.45. Due to the high spin rate

(w = 4000 rpm) the void was axisymmetric for solid-body motion. A

characteristic wavy distortion of the void occurred when:

a. The nutation% rate 0 was increased at fixed v and 8,

b. The nutation angle 6 was increased at fixed v and 0,

c. The kinematic viscosity was decreased at fixed e and

R2.

For low viscosity, the void was irreyular, indicating turbulent

fluid motion. The distortion was essentially restricted to the
plane spanned by the spin axis and nutation axis. A similar

observation was sketched by Scott's figure 1 without giving any
17detail. Whereas Scott indicated that the void offset from the

axis at the cylinder end plates, Miller's photographs show no
offset. The effect of the void on the fluid motion is unknown.

Flow field observations are presently in preparation at
C-SL. 9  A laser-induced colored dye technique combined with high-

speed photography is utilized to determine the three-dimensional

velocity field.

3. DIMENSIONAL ANALYSIS

We consider a cylinder of length 2c and a radius a,

rotating about its axis with the spin rate w. The axis of the

12



cylinder is inclined to the (vertical) nutation axis by the

nutation angle e and rotates with nutation rate f about the

vertical. The cylinder is completely filled with a fluid of

constant density P and kinematic viscosity v. The cylinder is 0

symmetric with respect to the margin 0 defined by the point of

intersection of the two axes of rotation (see figure 1).

0

/A:

aa

'a

c "
0

spin nutatlon
axis axis

Figure 1. Dimensional Analysis Test Cylinder Configuration

The motion of the fluid is governed by the continuity

equation

~v=v 0 (1)

13
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and the Navier-Stokes equations

DV 1 Vp + vV2 V 
(2)

Dt p

where V is the velocity vector and p the pressure. The V in equa-

tion (2) is measured in an inertial ,:oordinate system. The body
force due to gravity g is neglected in equation (2). Justification

will be given shortly. Equations (1) and (2) are subject to the

no-slip and no-penetration conditions at the side wall and end

walls ot the cylinder.

The solution of equations (1) and (2) under the given

boundary conditions is completely determined when the following

quantities are given: a, c, 8, w, 0, p, and v. Hence, any quantity

derived from this solution can be written as a function of these

seven parameters. As an example, we write the despin moment M

exerted by the flow at the cylinder as

M = t(a, c, 0, W, Of, p, ) (3)

The principle of dimensional homogeneity requires that the function

of f has the dimension of the moment M. According to Buckingham's

H-theorem, this can only be satisfied if the function of f is

composed of terms that are products of powers of the seven

parameters.18 For example,
IL

P, P2 P3 )P4 )P5 P6 P7.
f1 const (a) (c) (e) (W) () (0) (v) (4)

where the constant is dimensionless and pl,...,p 7 are constant

powers to be determined. We utilize the following dimension table:

14
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M a c , P8,

Length (L) 2 1 1 0 0 0 -3 2

Time (T) -2 0 0 0 -1 -1 0 -1

Mass (m) 1 0 0 0 0 0 1 0

2 2
which expresses, for example, the dimension of M as m . L /T

Exploiting dimensional homogeneity of equation (4) and comparing

powers of L, T, and m separately provides the following system of

equations for Pl,...,P7.

L: 2 p, + - 3 + 2 (5a)
1 2 P6  P7

T: -2 =-P 4 - p5 - P7  (5b)

m: 1 P6  (5c)

Since only three equations are available to relate the seven

quantities, we are left with 4 degrees of freedom that express:

a. The presence of the nondimensional nutation angle e

b. The presence oL two length scales, a and c

C. The presence of two time scales, i/w and 1/0

d. The possibility of defining an additional length

scale (for example, a 2 /v) or time scale (for example,
a/%/w-v-) based on the kinematic ,'iscosity.

Only equation (5c) provides unambiguously P 6 = 1, since there is a

unique scale for the mass. Eliminating P 6 from equation (5a)

results in

L: 5 = Pl + P 2 +2P 7  (5d)

15



In order to remove the ambiguity, we choose a, w, and 0 to form a

basic system of dimensions. We can then express equation (4) in

the form

p1+P 2+2P7  P 4 +p 5 +P 7

f= const (a) (W)

P6(2) P2 P3 PSI VP75

pt

where the powers of a, w, and p are determined by equations (5d),

(5b), and (5c), respectively. Introducing the dimensionless groups

X =c/a (aspect ratio)

T = SI/W (nutation frequency)

(6)

= sin 8

Re -=wa2 /v (Reynolds number)

we obtain

25 (P2 P 3f const 0w a .6 . tiRe (7)

where the expression in parenthesis is dimensionless and the powers

P2[ P 3 ' P5 1 and p 7 are arbitrary. Forming the dimensionless despin

moment M*, we obtain from equations (3) and (7) in general form

2 a M* = M*(Re, X, T, 0) (8)
Owa

In a completely analogous manner, we can form other dimensionless

flow quantities with the functiolal dependence on the same

16



parameters (see equation 6). Different ways to find the functional ... ......

dependence will be discussed in Section 3.2.

If partially filled cylinders were to be considered, the

list of parameters (equation 6) had to be completed by the fill

ratio = (fluid volume)/(volume of the cylinder). If gravity, g,-
2

were taken into account, the Froude number, Fr = a/g, would have

to be included in the list of parameters. In our application, Fr

is typically of the orde. 10 3 -- the inertial and/or viscous forces

dominate the fluid motion. The negligible effect of the Froude

number is clearly demonstrated by the cylindrical free surface in

Miller's void observations (see figures 3a, 4a, and 5d). 8  This A

surface should be an axisymmetric paraboloid, if gravity had an

effect. Anyway, if the fluid boundaries are fixed, as in the case

of a completely filled cylinder, the Froude number is insignifi- -

cant, and the only effect of gravity is to contribute a hydrostatic .

distribution to the pressure.

The definition of the Reynolds number in equation (6) is

as arbitrary as the choice of the basic scale-s a and w. Other

Reynolds numbers can be derived:

2 -

Re1  Re . T, Re 2 = Re 2 ¶ ' , Re 3 = Re. T (XO) 2  (9)

or in terms of physical parameters

Re1 = SRa2 /V, Re2 = Q2c2 /V, Re 3 = fb 2 /v (10)

where b - c . sin 8 is the nutation radius of the cylinder (see

figure 1). The question, which of these Reynolds numbers is most

convenient, that is, leads to the simplest funCLioral relation for

M* and so on, cannot be answered by the present tformal, dimensional

analysis.

si C

17
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3. 1 Formal Scaling Aspects

There are two important consequences of this dimensional

analysis, however. First, we have reduced the number of seven

physical parameters by the number of three basic dimensions to only

four dimensionless parameters. This simplifies the mapping of the

pai ametrical dependence. Second, equations such as (8) show that

the nondimensional flow quantities are identical if Re, X, r, and "

are identical-, no matter how these values are achieved. This fact

allows working with properly scaled physical quantities.

Let us replace the original parameters a, c,..., by the

model parameters am = a -a' cm = c , ac't*.' where a, act'...'

are scale tactors. Then, a physically similar solution (identical

in nondimensional terms) is obtained if the four parameters

(equation 6) remain unchanged. In other words, if

c a (10a)c a

O = C( (10b) . .

,aa a (10c)

S= 1 (10d)

This last equation shows that the nutation angle (as

dimensionleas quantity) cannot be scaled. Witn equation (10)

satisfied, the same value ot M* = M* will be obtained according to * *.

m
equation (8). The physical (dimensional) moment, however, will

change as

2

Mm 2 5 . M (i1)

The relations (equitions 10 and 11) allow model tests without any

more detailed knowledge of the physics of the problem. It is

18



mainly equation (10c) that allows for changes of rotation rates,

size of the cylinder, and viscosity of the liquid.

3.1.1 Scaled Container.

The experiments reviewed in Section 2.1 typically use a

full-scale container with a mass of 12.25 kg, rotate it at 5000 rpm

(10,000 rpm in the new test fixture), and impose a nutation with

500 rpm under an angle of up to 20 degrees. Clearly, operating

this experiment bears the danger of catastrophic failure and,

therefore, requires extreme care in designing, machining, and

balancing the apparatus. The reason is obvious from equation (7)

or (11): the moments increase with the fifth power of the length

and with the second power of the rotation rates. The scaling

relations (equation 10) allow the design of a harmless, smaller

test fixture at reduced cost that bears other advantages.

Let us first consider that the working fluid remains

unchanged, (cp = 1, av = 1). If the linear dimensions of the

cylinder are reduced by a factor of a < 1, equation (10c)
2immediately requires . = 1/a a, an increase of the rotation rates

by a factor 1/ut. From equation (II) it becomes clear that the
amoments are only reduced by a factor Ca" A drastic reduction of Fwý

the moments cannot be achieved in this manner, since the required

rotation rates would be prohibitive. It seems necessary,

therefore, to change the working fluid. For liquids, there will be

only a small variation in density, ap = 1, and the variation will

be mnainly in the viscosity. Keeping the original rotation rates,

=1 (equation 1c) requires a =a Using a model with =a

1/2, say, a liquid with vm = v/4 must be used to maintain dynamical

similarity. In view of the high viscosities of interest,

such a liquid can easily be found. The moments, then, are
5

considerably reduced by a factor a a - 1/32. Further reductionsP- a

can be achieved by the use of even smaller models.

19



3.1.2 Scaled Velocities of Working Fluids.

Disregarding structural problems, scaling may have other

benefits, (for example, flow visualizations). Should it turn out

that the velocities are too large for easy visualization of the

colored dye, the time scale of the phenomena in the full-size

cylinder can be changed by reducing spin rate, nutation rate, and

viscosity by the same factor, aw = a = . The moments drop by
aP 2 , slowing down the spin-down process. The velocities drop by

the factor a . Smaller picture frequency (factor a ) and larger

exposure times (factor 1/a ) would recover the original results.
w

Should it be desirable to work with a special fluid, for example,

water instead of some more viscous silicone oil, the necessary

ad3ustments of rotation rates and cylinder size can be made

according to a2  , from equation (10c).a

3.1.3 A Small Model Test Fixture.

By proper choice of the scale factor a, it seems possible

to set up a model test fixture (based on a standard record player

as a turntable) at low cost for direct visual observation of the

motion in high-viscosity fluids. With fixed SM = 45 rpm, the range

of nutation rates can be covered with a > 0.075. A reasonable

range ot T can be obtained with wi < 2000. With a = ac = 0.4, the

filled model cylinder has a mass of approximately 0.8 kg. Moments

are reduced by about tour orders of magnitude. The resulting

factors a > 0.012 allow covering the interesting range of higher

viscosities.

3.1.4 Data Reduction and Cross-Checks.

Miller's experiments at CSL provide despin moments for

fixed X = c/a, for four values of o = sin 6, and numerous values of

the viscosity. Nutation rates can be varied in a broad range, and

spin rates vary continuously during spin-down. It is obvious from

equation (8) that only two parameters, Re and T, need to be varied
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to obtain (or document) the complete parametric dependence of M*

for fixed X and 0. It is useful, therefore, to present all data in

dimensionless form. The experimental procedure mentioned earlier

partially duplicates data. As an example, nutation rates Q and

Q2 I/2 with fluids of viscosities vi and %2 = vl/2 should

provide identical values of M* at I &nd W2= W1/2. This

duplication can be utilized for a cross-check of the data and for

verifying the validity of the assumptions outlined in Section 2.1. 0

With this validity assured, the duplicati.on can be avoided in

future experiments by using cylinders of different aspect ratios.

3.2 Parametrical Dependence.

The second step in the fluid motion analysis and the

resulting moments requires finding the functional dependencies of

nondimensional variables such as M* in equation (8) on the param-

eters Re, X, T, and a. The results can then be recast in terms of

other, perhaps better suited parameters, such as one of the modi-

fied Reynolds numbers in equations (9) and (10). Various methods

can be exploited and their results combined to achieve this goal: 0

* Analysis of experimental data P

* Formal analysis of the governing equations

0 Analysis of numerical results 0

* Analytical solutions.

Knowledge of the analytical solution for the velocity and pressure

field would completely solve the problem. However, there3 is no
chance to tind the solution of the full Navier-Stokes equations.

Simplifications that may permit finding approximate solutions will

be discussed in Section 5. Numerical solutions of the tull
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equations can be obtained, in principle, but are not yet available.

Analysis of the governing equations--even without solving them--

sometimes reveals special combinations of the parameters as most

relevant. An example is the Taylor number Ta 2Re 2 . (R2 -

(R2 + RI), with Re = •R 1CR 2 - Rl)/V, that characterizes the fluid

motion of a viscous liquid between concentric cylinders of radii R
and R,, with the outer fixed and the inner rotating with n. Simi-

"lar combinations, square of the Reynolds number times a purely

• geometric parameter, occur in other problems. Physical arguments

are sparse in the present context and can be misleading, in fact,

since the motions of rotating fluids are often beyond our

imagination. In the following discussion, we attempt an analysis

of the experimental data.

* 3.2.1 An Example: Despin Moments.

This analysis is heavily restric-ed by the small number of

available data. These data are uncertain due to experimental

errors that are yet known. (Estimates from the cross-checks

suggested in Subsection 3.1.4 would be helpful.) Additional error

is introduced by reading the data from small figures.

From Miller's figure 7, it appears that the despin moment
M aL tixed X and a varies proportionally to Q2 . 6 Liquid density

and viscosity are not easy to identify for the wick-type fill. We
have therefore, not used M* but calculated M/Q2 . The values of T

and of 1/Z2 are given in table 1. There is only a small scatter in
the values of M/!Q2 , largest for the data points with small values

of M that are difficult to read accurately from the graphs. An
average value of 1.77 x 10- Nms 2 is obtained such that

3M -3 2
M 1.77 x 10 •2 or W2 1.77 x 10 T (12)

where • or W are in radians/sec. Based on runs 74 ana 25 only,

the average value would be smaller, 1.71 x 10 N - m sec2.
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Table 1. Despin Moments Analysis Data*

Run W M 103 M/Q2

(rpm) (rpm) (N * m) (N • m - sec27

74 1000 381 0.381 2.56 1.61
1250 379 0.303 2.69 1.71
1500 366 0.244 2,70 1.84
2000 347 0.174 2.33 1.76
3000 299 0.0997 1.60 1.63
4000 225 0.0564 0.895 1.61
4500 159 0.0354 0.479 1.73

25 1500 354 0.236 2.34 1.70
2000 339 0.170 2.26 1.79
3000 293 0.0977 1.61 1.71
4000 221 0.0553 0.947 1.77

23 2500 296 0.118 1.71 1.78
4000 192 0.0479 0.652 1.61
4500 100 0.0222 0.289 2.64

26 2000 192 0.0958 0.698 1.73
2500 107 0.0427 0.277 2.21

21 2000 156 0.0780 0.393 1.47
2500 101 0.0403 0.173 1.55

*Extracted from Miller's Figure 7.6

The deviation from this average is shown in figure 2. It is diffi-

cult to decide on a systematic variation with w [or the Reynolds

number (Re)]. Although there seems to be a tendency for the data

of these two runs, we refrain from any additional conclusion.

From Miller's figures 8 and 9, the effect of e or a can be

estimated. The values of M/Q 2 for the four angles e are given in
2

table 2. It turns out that the ratio )f M/(SI sin 8) is almost the

same for each of the four angles. Significant deviation occurs

only for 8 = 5 degrees. For 6 > 5 degrees, the data can be

approximated by

M 0.0156(Q sin 8)2 or M 2 0.0156(TC)2 (13)
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Figure 2. Deviation from the Average Value Based on Runs 74 and 25

Table 2. Values of M/f2 tor the Four 8 Angles*

c ;= sin 8 103 M/0 2  M/(Q sin 6)2 ' Average
2 2

(degrees) (N m • sec ) (N - m sec

5 0.0872 0.076 0.0100

10 0.1736 0.497 0.0165
0.0156

15 0.2588 1.02 0.0153

20 0.3420 1.77 0.151

F1.rom Figures 8 and 9 of Miller 6
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A similar approximation can be obtained from the data in table 3

for Miller's figure 12. In this case, the cylinder is filled with

a homogeneous fluid of high viscosity. Combining data for all tour

i angles e results in

M 0.008j4(il sin 8)2 (14)

I The different constants in equations (13) and (14) can be attrib-

uted to various effects: different mass of liquid, different

effective viscosity, and, in addition, different geometry due to

the baffle in the wick-type payload.

Table 3. Approximation of Miller's Data with the Cylinder
Filled with a Homogeneous Fluid of High Viscosity*

0 0 sin 8e 103 M/ S M/(! sin 8)2 Average

(degrees) (N m sec (N . m . sec

5 0.0872 0.0689 0.00904

10 0.1736 0.2116 0.0070
0 00814

15 0.2588 0.5559 0.00830

20 0.3420 0.9581 0.00819

*Miller's Figure 126

The expressions for M contain only quantities that are

related to nutation. This reflects Miller's observation that the
despin moment was essentially independent ot the spin rate when-

ever -i was sufficiently large. The other parameters, in particular
those that were held constant, are hidden in the constants. The

aim of finding the functional relation [see equation (8)] in an
as-simple-as-possiale torm also requires reviewing the reference

quantities that were chosen to obtain the parameters [see equa-
tion (6)]. EquaLions (13) and (14) suggest that the reference
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velocity wa should be replaced by OTh sin e. From physical arau-

ments, it also seems reasonable to replace pa by the effective

mass of liquid, m£ = 2Trpa-c, so that

22:M =mL (SIC sin e)2  M~ (15)

where M* = M*/2(TTX3 T2 2) is almost independent of i, w, and e.

The dependence of M* on the viscosity can be estimated1
from Miller's figure 13.6 Figure 3 shows a modified plot of these

data in the form, log M versus log 1/v. This representation has --b
been chosen since v appears only in the Reynolds number and,

therefore, the dependence of M* on Re should be revealed by this

plot. Although only a few data points are available, it is obvious

that at least two regions can be distinguished. For high viscosity

(region I), v > 0.2 m2 /sec, it seems that M* - i/v, whereas for

v < 0.1 m ,'sec (region II), the data align along M (I/X)
with some transition region in between. It is not clear, though,

whether a second transition occurs tor v < 10-4 m2 /sec.

The data of Miller's figure 12 and the moments according
to equation (14) are located in the region where M* 1/v. Since

j and 0 are constant for figure 13 and v is constant for figure 12,

both sets of data can be combined into

2

m SI. (c sin 6) = m£fnRe M2  (16)M 2 3

where M2 is almost independent of Q, w, e, and v. From comparison

with equation (14) we obtain

M2 = 0.00294 m2/sec (17)

The value of the Reynolds number for the data in figure 12 is

SRe3 t 2.05, very small indeed. For the range of smaller

"viscosities, expressions analogous to equation (16) cannot be

26
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derived due to the lack of data. We also note that the

approximations suggested in this section need further verification.

It one adopts Re3 as the relevant Reynolds number, the

void observations of Miller can be linked to the despin moments in
8figure 3. The slight difference in the lengths of the cylinders

can be neglected. The arrows in figure 3 indicate the Reynolds

numbers for the photographs in Miller's figures 3, 4, and 5. To

within the accuracy of reading the void distortion from the small
reproductions, the value of Re3 sorts the pictures in the sequence

of increasing amplitude of the sinusoidal distortion. The void
distortion is barely visible in pictures 4a and 5b, but increases

as Re3 changes through the transition region into region II. It is
tempting, therefore, to associate the void distortion with the

deviation of the despin moments from equation (16) for region I.
One might also speculate that the motion in region I is essentially

axisymmetric. Flow visualizations of the axial velocity component

can decide this issue.

3. 2.2 Gyroscope Data.

We attempted to exploit the measurements of D'Amico and

Rogers in order to check the previous conclusions and to obtain
additional insight. 1 0 However, this attempt failed since the

inertial moments of the gyroscope are not given in the paper; these
data are necessary for extracting the liquid side moments from the

equations provided by the tri-cyclic theory. 1 9

We also attempted to correlate the yaw angle growth rates

with various dimenisionless parameters. One of our observati.ons

seems worth reporting: It Ii/Re is plotted versus Tr' the (few)

data points fit well on straight lines, in particular for the

cylinder with X = 1. The slope of these lines seems to be

independent ot w, but increases with viscosity.

28
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4. GOVERNING EQUATIONS

Since the experimental data base is too small for a

detailed analysis of the moments exerted by the moving fluid, we p
prepare for complementary theoretical studies. This requires one

to decide on a suitable coordinate system and to write the

equatirrnz of fluid motion and appropriate boundary conditions in

these coordinates. Subsequently, simplitied sets of equations can
be developed using various assumptions for approximate solutions.

The geometry and kinematics of our problem suggest one of
the following three coordinate systems: P

"* Inertial or earth-fixed axes, index i

"* Cylinder-fixed or body-fixed axes, index b

0 Intermediate, nutation-oriented coordinate system,
index n.

The choice of a special system is largely guided by the idea that

the parameters of the problem should appear in the differential
equations, not in the boundary conditions. The boundary conditions

should be as simple as possible. These requirement- are obviously
not satisfied if equations (1) and (2) for an inertial system are

used. Only v and p appear in these equations, while the remaining
five parameters are hidden in the boundary conditions. Moreover,

the boundary conditions are time-dependent.

4.1 Coordinates Fixed to the Cylinder.

Coordinates tixed to the spinning cylinder are analogous =
to the body axes often used in aeroballistics. The velocity V
in equations (1) and (2) is measured with respect to an inertial

system. The body-tixed system rotates with angular velocity •b'

where S
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b= b(t) = t + w(t) (18)

with respect to the inertial system, where n and w point in the
direction of the nutation axis and spin axis, respectively. In

* this system, a different velocity, Vb, will be measured.
Velocities Vi and Vb are related by

vi X + ab x r (19)

20 ._
where r is the position vector. This transformation leaves the

continuity equation unchanged:

V b= 0 (20)

Noreover, for a Newtonian fluid, the viscous terms are invariant
under the transformation equation (19). Major changes occur only

in the acceleration terms:

DVi DVb +20 xV + X x + x r (21)

Dt Ot -"b -;-b -b Qb ~ b

where 0 denotes the time-derivative of -b. The three additional

terms containing fŽb are the Coriolis acceleration, the centripetal

acceleration, and the acceleration due to the change of the
rotation rate, respectively. The centripetal acceleration can be
written in terms of a potential function pc:

- x (P-b x r) - V4 c (22)

and can be considered as an additional (conservative) force per

unit :'l3:'. Therefore, this term is writtei Dn the right-hand side

of the ;:-omentum equation:

PDVb = _ L V p + V4 + 2Vb (23)
- 2Q X V xr (2-3pDEt -b -b + -b c
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It is obvious from equation (23) that the centrifugal force can be

combined with the pressure p into a reduced pressure:

1 I x r12 ( 4
Pb =pP =P 2 x (24) (PC 2

The boundary conditions of no-penetration and no-slip reduce to the
simple form *0

b= 0 at the boundaries (25)

Only the radius a and the half-length c of the cylinder are intro-
duced by equation (25). All the other parameters of the problem

are contained ir equation (23) with -b from equation (18). The
system of equations (20) and (23), with (25), supports trivial

solutions Vb 00, , whenever -b = 0 (that is, rigid-body
motion of the tluid). In a more obvious form, this result can be

written as

- 0 for wQ sin 8 0 (26)

There are, in fact, three separate cases of rigid-body motion:

0 For zero spin rate, w = 0

0 For zero nutation rate, 0 = 0

0 For a rotation with w + S2 about the same axis.

According to equation (24) Pb 0 describes the pressure
distribution

p 1 2 (
S I rd7)

where rd is the distance from the axis ot rotation.
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A fourth case of rigid-body motion occurs for large vis-

cosity, U cc. In this limit, equation (23) reduces to v2V =0

for Stokes flow.

4.1.1 Dimensionless Form.

Using the basic system of dimensions (a, w, and p), we

introduce dimensionless variables (denoted by ) in the following

way:

r = a, t = t/w (28)

V AA 2
V = • aw, -Qb = nb/W Pb = pb P(aw) (29)

The basic equations then take the following form:

Vb =0 (30)

A A + _b +1 2-
- + 2 x + -r Vb + V b (3

Dt dt e -b(1

In equation (31), 7 refers to dimensionless variables.

We note that the spin rate w must be nonzero for the

availability as a reference quantity. This is no restriction, how-

ever, since according to equation (26) rigid-body motion occurs for
S= 0. We are rather interested in the deviations from rigid-body

motions for w # 0.

4.1.2 Components in Cylindrical Coordinates.

In view of the axisymmetry of the boundary, we introduce
cylinder coordinates r, 0, and z, where the z-axis coincides with

the cylinder axis and r = 1, # = z = 0 describes a fixed point of

the cylindrical side wall. Since no further use is made of
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dimensional variables, we simplify the notation by dropping the ^*

Using equation (6), we obtain the components of Qb and in the
form:

S .- To Cos (t+ ), +r -

= Tosin (t + 0), -.

2 1/2SI= 1 + T(I - a 11 =0 (32)

With Vb = (U 0 us, Uz), the continuity equation (30) yields

r - (rur) + L + au - 0 (33)

while the momentum equations take the form .

2D u • 2(f2U - Q U) + '•z • [
D'Ur - r - 2(0

ap U-L u 34.abr R r 12 u 2 aý (34a)
--- I-'u

R ~r r r

u--u*--_-

u u
D'u + + 2(1z u Q u ) - 0rz

r z r rz r

I a
1 b0 + __ D 11,u 4_ 2 r+4 b
r Re r2 r2 ) (34b)2

9P 1
D'u + 2( Ou U + -D"U (34c)Z r r 3rz---~-' Re4c)
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The boundary conditions require

u r= uJ = uz 0 for r = 1, IzI X, 0 < @ < 21T (35a)

ur = u = Uz = 0 for z = +X, 0 < r < 1, 0 < * < 21 (35b)

Although these conditions are independent of time, a time-dependent -

solution is desirable, due to the time-dependence of the coeffi-

cients S r' Q 0 [see equation (32)]. It is obvious that a simple

time-periodicity with period T = 2r will evolve if transient behav-

ior (after sudden start of nutation, for example) is disregarded.

The possibility of studying small deviations from rigid-

body motion as a perturbation of the zero-state [see equation (26))

seems to support the use of this body-tixed coordinate system. The

periodicity in time can be taken into account by introducing a

modified azimuthal coordinate, 01' = + t. At closer analysis,

however, this change of coordinates is equivalent to working in a
system that rotates only with 0 about the nutation axis.

4.2 Coordinates Fixed to the Axes of Rotation.

This nutating coordinate system rotates with constant

angular velocity -n = Q about the origin. The equations of

Section 4.1 require little change: Quantities with index b are

replaced by quantities with index n and the terms with n are

dropped. The boundary conditions, however, are inhomogeneous, due

to the rotation rate w of the cylinder with respect to the nutating
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system. Instead of equation (26), the trivial solutions for

11 sin 0 0 are rigid-body rotations with w about the cylinder

axis. Homogeneous boundary conditions can be retrieved, and an

apparently simple formulation can be obtained by splitting the

velocity field Vn into a rigid-body rotation with w and a deviation

due to S sin 0 $ 0. In the following, we return to dimensionless

variables.

We introduce cylindrical coordinates r, *, and z, where

the z-axis coincides with the cylinder axis, as before. However,

*= 0 describes points in the plane spanned by the nutation axis

and spin axis, because 0 $ 0. The components of n= are

- To cos ,Q = Tosin# , I(l - 02)1/2 (36)

Hence, in the nutating frame, the Coriolis acceleration introduces

no explicit time-dependence.

4.2.1 Decomposition of the Flow Field.

We decompose the velocity Vn = (ur, u0, uz and the

reduced pressure p n according to

u r V r u = ¢ + v=, uz vz 7..

12
pn = p + -1 (1 + 2Sý) r2  (37)

Although the continuity equation remains in the form

3vý3
(rv ) + + - 0 (38)

r Wr r r ao z

for the deviation (v v,, v , the r,.omentum equations take the

following form:
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2
DIVr -- o 2(1 + Q~z vo + 24~vz ;

r r z

- - ~i L r V L.V, (39a)

Rer D z ' r r z
v9v

D'v1 + 2 - - 23 9b*" 2

DV +r02i

z + v - 2 r z lr + D"v(39c)

D' now reads:

V
DO - + + Vr -r + rL L + Vz (-

r~~~~'. Tr, o zT-(0

The boundary conditions are homogeneous:

Vr =V, = Vz = 0

for r = 1, Izi 0 < < 27 (41a)

vr = v= vz - 0

for z = +A, 0 < r < 1, 0 < 0 < 271 (41b)

The system equations (38) through (41) for the deviation from
rigid-body motion bears some advantages over equations (33) through
(35). The system can support steady solutions; this formal conclu-
sion is consistent with Miller's void observations, which showed a

steady void distortion in the nutating system. This system can be

36



S

easily linearized and the conditions for linearization are obvious

(see Section 5). Equation (39) displays an important forcing term,

2r~2r = -2Tar cos ý, which cannot be incorporated into the reduced

pressure. In dimensional form, this term is proportional to

wý sin 0. By comparison with equation (23), it becomes clear that

this term produces the deviation. In fact, the system equations

(38) through (41) have a trivial solution if, and only if,

Re • Sr = 0. In the following sections, we continue the analysis 0

based on the equations and notation introduced tor the nutating

system.

4.2.2 The Reduced Pressure p'. S

The relation between 'he reduced pressure Pn and the

pressure p is given by
0

1 I. 1 2 2d
Pn = P - 2 1 an x r p r d (42)

where rd is the distance from the nutation axis.

From equation (37) we obtain

p -F [( + 2 Q rz + r2 r2] (43)

Using equation (36), we find for point r, 0, z

SI [I + _E1/ ]
p p - 2) + i(1 2) r 2  + (Tar sine 2

+ (TOz) 2 + 2T 2 G( ) 1/2 rz cos$ (44)

It is straightforward to show that p' is identical with the

reduced pressure pb in thu, body-fixed system for the same point.

The difference p - p' has to be taken into account in calculating

forces normal to the cylinder walls and for the moments
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perpendicular to the z-axis. No contribution is made to the despin

moment about the z-axis, that arises from only tangential shear

stresses on the walls.

5. -LINEARIZED EQUATIONS

The momentum equation [see equation (39)] is nonlinear due

to the convective terms contained in D'. There is little hope of

findin, solutions of the full system equations [see eqiations (38)

through (41)] except approximations from computational or

perturbation methods. Perturbation methods often enhance insight

into the structure of the problem and, therefore, we consider in

this section the lowest-order approximation for small deviations

V, re, vz, p' from rigid-body motion, small enough for neglecting

the qUadratic nonlinear terms.

There are two circumstances that lead to small deviations.

The first case of weak forcing through (r was mentioned above. Ther
second case occurs at a small Reynolds number, that is, large vis-

cous damping. The motion is then essentially governed by the terms

multiplied by l/Re in equation (39). We will consider this case in

Section 5.3

5.1 The Case of Weak Forcing.

According to equations (39) and (36), weak forcing occurs

for

To « 1 (45)

This condition can be satisfied by either small T (nutation rate

small in comparison with the spin rate) or small a (small nutation

angles), or a mixture of both. It is not necessary to restrict

and a separately as was done in some previous studies.21
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With equation (45) satisfied and velocity components of

order O(TO), equations (39) can be reduced to

av av
r _r 2(1 + v

e[D vr - rr - L_ (46a)

+ !v, 2(1 + nz Vy.

at z r 2 vi :"

_ p' + 1 D V."vo - + avr (46b)
r ao Re r 2  r 2 Do

av av
+ z _r~ _e 16c

-t+ a 0 - 2 r 2r + -DRe z(46c)

Continuity equation (38) and boundary conditions equation (41)

remain unchanged. This system of equations is linear, but of high

order due to the presence of viscous terms. It is the key to

understanding the moments exerted at the cylinder for arbitrary

Reynolds number and weak forcing. The steady solutions at small

values of Re are of special interest. A first attempt to find

these solutions in closed form led to yet unresolved problems with

the boundary conditions for a finite-length cylindeL We return to

this point in Section 5.3. Only for small viscosity, that is, for

the limit Re-o , the system equations (38), (46), and (41) allow

for relatively simple solutions.

5.2 The Inviscid Limit.

For Re -" and equation (45) , continuity equation and

momentum equations take the following form:
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r_ v O-+L 0 (47a)

r Dr r r 2(1 3z) ~ - 4b
* rr F * 1 r 1 (47cav a v

.- + 2 2(l + Q vO .(47b)
at zi

This system is similar to that considered by Stewartson and

Roberts, who neglected i *21 Using an ansatz of the form

vr fr (r ,z) s in ( + k t), vo f (r, z cos ( + kt)

=z f (r, z) asin (+ k t), p g gr, z) Co~s + k t) (48)

one obtains

(I + k) f 2(1 + a ~ fý=4 (49a)

-(l + k) fo + 2(1 + n r -f (49b)z ~rr

.O21

(1 + k) f = - + 2r co (47k9c)

The first two equations provide

J(1_+ k)2(+Q

r w (1glected r - 21(1 U an (50a)
( k 4(l +Q

z
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2(1 ÷lz) -+ (1 + k)
f¢ =2 2--.

(1 + k) - 4(1 + CIz) (50b)

Continuity equation (47a) requires

a2(1 + k) - 4(1 + f z )2 2
1+-2 .- o (51)2r2 rr r2 (I + k)2 az2 .-

which can be written as a Laplace equation for g, by suitably

transforming z. A particular steady solution of equation (51) for S

k = 0 can be found in the form

go - Arz + Br, p= go cos * (52)

Consequently

v (Az + B) sine (Az + B) Cos .Vr0 1 + 20 z ,v0 1+ 2 iz # .

v (2TO- A) r sin (53)
2 0

This solution accounts for the steady forcing term in equation

(49c). Additional unsteady solutions with k # 0 can be found trom

equations (49), (50), and (51) with the forcing term in equation

(49c) dropped. These unsteady solutions represent the modes of

inertial oscillations. Under more restrictive conditions, these

modes were studied by Stewartson for a cylindrical container, and

by Stewartson and Roberts for a spheroidal container. 11,21 The

spheroidal container is an interesting special case where only one

mode of oscillation of the liquid is induced by nutation.
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For the spheroidal container with aspect ratio X-
. -. -.. . .... ..

2
r 2 + L_= 1 (54)

considered by Stewartson and Roberts, the boundary conditions can

be written in the form

zvz
rvr + = 0 (55)

It follows that B = 0 in equation (53), but

A = 2TO(1 + 2QZ )/(l + 20 z - X2 1 (56)

The unsteady solutions are free oscillations of arbitrary amplitude

C, which is fixed by initial conditions and frequency:

1 + 2flz - X2 21
(57) . .

1 +

If container shape X and nutation rate and angle are such that _

k # 0, the solution is

Vr = + 20z -x2 + Cz sin ( + kt)

1+Iz

-20 z
= r + Cz cos ( + kt)

V¢ = 2 C

I + 20lZ-

-2N Pofr 2 '

V 1 + 2- 2 CX r sin ( * + kt)
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-2(1 + 2P) Q rrz
p' 2

1 + 2flO -

z

+ 2C r s + kt) (58)
1 + X2 rzcs( kt

For a sphere, X 1 1, the frequency from equation (57) is k - z

This result is different from stewartsoi and Roberts, who found

resonance, k = 0 for X = 1. This result is reproduced by letting

I z * 0 in equations (57) and (58).

Here, resonance occurs in a slightly nonspherical

container with X 1 + Q z For k = 0, we obtain a solution in the

form

Az -r
Vr = 1 + 2 Qz i 1 + I zt

Az •
vCos *=ztv•=I + 20 zCO =1+ Zt

(1 + 21l ) -Qr
vz -Ar sin + 1 + r rt

p' I Azr cos * + (1 + 20z r (59)

where A is an arbitrary constant governed by the initial condi-

tions. The physical interpretation of the solutions (see equations

(58) and (59)] is very similar to that given by Stewartson and

Roberts.

Disregarding the constants in these solutions, which are

as yet undetermined, we find that velocity components and the
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pressure p' are proportional to Ta, or of order O(TCr). We also

note the Simple periodicity of the solution in the azimuthal

coordinate •.

5.3 Effect of Viscosity.

We have not yet found analytical solutions of the viscous

equations (46) subject to equations (38) and (41). With the

solutions of the previous section and those of Stewartson for the

inviscid case, however, we can obtain some qualitative information
on viscous solutions. The inertial oscillations will suffer

increased damping as the Reynolds number decreases. The resonant

peaks in the side moments versus T will broaden and finally perish.

At a sufficiently low Reynolds number, the equations support a

steady solution. The dependence of this solution on * will still

be simple. However, the simultaneous appearance of velocity com-

ponents and their derivatives with respect to ' in equation (46),

for example, avr/aO and -vr/(Re . r ) in equation (46a) indicates a
phase shift of the velocity field with respect to the forcing.

This shift increases as Re decreases.

Exploiting the simple periodicity in ', the linearized

equations can be reduced to partial differential equations for
functions ot r and z. A separable solution can be found only for

an infinite cylinder, X + =. We have not pursued this solution for

two reasons. First, it is questionable whether this solution is

relevant to the problem with X = 0(1). Second, the solution of the

resulting ordinary differential equation plus boundary conditions

requires a major computational effort. For finite aspect ratios,
the main difficulty for the analytical work is to satisfy the

boundary conditions at side walls and end walls simultaneously.
Similar problems were found by Gerber, Sedney, and Bartos. 14 They

employed the boundary-layer approximation in order to satisfy the
no-slip condition at the end walls. Therefore, the range of

applicability of their method is comparable to Murphy's method,

which uses the boundary-layer approximation at end walls and side
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walls. 1 3 These methods are not applicable at low Reynolds numbers

where viscous boundary-layers thicken and finally merge,

overwhelming the inviscid core. For this viscous range, further

analytical work needs to be carried out. Alternatively, the

partial differential equations for the functions of r and z can be

solved by computational methods. The problem of solving the

linearized equations appears as a basically two-dimensional specialIt
case of the full problem based on the nonlinear equations in

Section 4.2

5.4 Scaling Aspects.

From equations (38), (41), and (46), we have made various

attempts to obtain modified systems of equations that reveal the

functional dependence on combinations of the dimensionless

parameters. We have rot yet been successful in identifying single

(or paired) parameter combinations that govern the solution. The

dependence on X concealed in the boundary conditions can be

introduced into the differential equations by stretching the

z-axis, z = Xi. In order to keep the continuity equation free from
parameters, the axial velocity can be replaced by v. - Xvz. The

parameters T and a introduced by the forcing term in equation (46c)
can be incorporated in the velocity scale. The form of X0 in

equations (53) or (58•) suggests rescaling the velocity components
and pressure p' by a factorXTo, which would replace the reference

velocity wa by SIc sin 0. We note, however, that no changfd of the
Reynolds number would occur in the linear equations for the

deviation from rigid-body rotation. Additional information on

proper scaling is expected from pursuing analytical solutions of

these equations.

IL
5.5 Estimates on the Velocity.

In order to obtain some guidance on the validity of the

linearized equations, we consider Miller's experimental data, in

particular his figure 13.6 With 0 = 200 we obtain a = 0.342, while
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T varies between 0.125 and 0.25. Therefore, 0.043 < TO < 0.086,

which can be considered small. It is questionable, however,
whether the resulting deviations from rigid-body motion are small

enough for linearization. With X = 4.29, the inviscid forced

solution scales with XTO < 0.367, which may be too large to permit

use of equation (46). on the other hand, viscous damping will
reduce the deviation.

The measured despin moments allow a rough estimate of the
velocity gradients at the cylinder walls. These moments originate

from the shear stresses T rO, at the side wall, and T ZO, at the end
walls. We assume that Tz and T are of the same order and can be
replaced by an average value u. The despin moment can then be

written as

3 (X O ra 3(+~ (60)

The term 1/3 represents the contribution trom the end walls and can
be dropped in comparison with X = 4.29, so that equation (60)

contains only the average of Tr@ for r = a. This stress is defined
as

av av
VP - r- + - (61)r=a r =a

With v r = = 0 at the side wall, we obtain

r L=a r=a

. Exploiting equation (60), the average gradient of v, at the side
wall can be expressed as
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Mt

a M (63)ar/3 r=a 47ra Xpv

m2 m3-..
With M 0.7 N • m for v = 1 m /sec, and p = 1400 kg/n, the aver-
age velocity gradient is ;/a 0.04/sec, providing an average

velocity of the order v = 0.002 m/sec. The dimensionless value
with respect to the angular velocity of the rigid-body rotation

(w = 3000 rpm) is v/(wa) = 0.00013, very small indeed. For
2v = 0.01 M /sec, the values are ý/a = 8.5/sec, V = 0.5 m/sec,

v/(wa) = 0.027, still sufficiently small to allow using the linear
equations. Therefore, the linear equations seem to cover the full

range where large despin moments were observed. For the smaller

viscosity v = 10-4 m2/sec, the velocity gradient assumes a large

value, •/a = 254/sec. Formally, we obtain v = 15.3 m/sec. This .

number may be misleading, however, since the growth of the velocity

occurs only across the thickness a < a of the viscous boundary
layer. The estimates from equation (63) provide some guidance on

the magnitude of the eelocity only in the fully viscous regime, say
for Reynolds numbers Re < 1000.

6. REMARKS ON MORE GENERAL CASES

From the foregoing discussion, it appears that the viscous

fluid motion in the spinning and nutating cylinder can be studied
on the basis of the linearized equations of Section 5. However,

there are a number of disconnected topics that require using other
sets of equations. Concerning the gyroscope experiments and the

still unexplained changes in the yaw angle growth rates, the
solutions of the inviscid equations should be reconsidered without

resorting to weak forcing [equation (45)]. Beyond the inertial
modes studied by Stewartson, which have period 2n in 0, other

classes of modes exist with period 2n/n, n > 1, which may be
excited through the generation of harmonics at larger yaw angles. 1 1
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Other cases of interest are Lhe viscous fluid moLions at

smaller spin rates, where equation (45) may not be satisfied.
"Whenever equation (45) is invalid, the products of Or and O with

velocity components in equation (39) must be retained. Even at a

small Reynolds number, these products generate harmonics in #, and

the flow field assumes the form of a Fourier series in #.

Only the linearized equations of Section 5 bear the promise

of analytical or, at least, semianalytical soLutions. Strong
forcing or large deviations from rigid-body motion can only be

treated by numerical methods. There is as yet, little experience
in computing internal flows in simply connected rotating

containers. The three problem areas that need to be overcome are

0 No-slip condition at the end walls

0 Three-dimensionality of the flow field

0 Failure of most methods at the axis r=O.

As mentioned above, use of the linearized equations reduces
the problem to two dimensions, r and z. We have studied the

applicability of three classes ot methods--finite difference,
polynomials, and finite element.

Finite-difference methods seem to be least promising due to

the difficulty of achieving sufficient accuracy in presence of the
axis at r = 0. The simple geometry of the cylinder favors using

spectral methods, with a Fourier expansion in 4 and a Chebyshev
expansion in z. Use of Chebyshev polynomials in r was considered,

but abandoned for slow convergence of the series. Legendre
polynomials or Jacobi polynomials in r appear as Lhe better choice,

but additional numerical studies are necessary for evaluating the
convergence properties. Whereas polynomials are usually chosen for

computational ease, expansions in Bessel functions may work best
for the present problem. It requires, however, major efforts to
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develop this yet-unexplored branch of spectral expansions. The

third method that seems most straightforward to apply to the

present problem is a finite-element method. No difficulties are

encountered on the axis. Even for the three-dimensional problem, a

relatively small number of elements may provide sufficient accuracy

of the moments. The accurate calculation of the flow field with a

large number of elements is a straightforward extension at

increased computational expense.
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